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LETTER TO THE EDITOR 

The Blume-Emery-Griffiths model on a Bethe lattice: 
bicritical line and re-entrant behaviour 

Roberto Osorioi, M J de OliveiraS and S R Salinas!: 
f Departamento de Fisica and Centro Internaciorial de Fisica da Mattria Condensada, 
Universidade de Brasilia, 70910, Brasilia, DF, Brazil 

Instituto de Fisica. Universidade de SBo Paulo, CP 20516,01498 SBo Paulo, SP, Brazil 

Received 11 July 1989 

Abstract. We analyse the global phase diagram of the Blume-Emery-Griffiths model on a 
Bethe lattice. As a function of coordination, we describe the main features of a staggered 
quadrupolar phase, and discuss the re-entrant character of some multicritical lines and phase 
boundaries. In the limit of infinite coordination, we regain the results of a two-sublattice 
mean-field calculation. 

The Blume-Emery-Griffiths (BEG) model in zero field is given by the Hamiltonian 

where S, = + 1,0 ,  - 1, for all lattice sites i, and (ij) labels a sum over nearest-neighbour 
pairs of sites. This model Hamiltonian, which is perhaps the simplest generalisation of 
the ordinary spin-; Ising model, has been used to account for multicritical behaviour 
displayed by magnetic systems (Blume 1966, Cape1 1966), 3He-4He mixtures (Blume et 
af 1971), and ternary fluids (Mukamel and Blume 1974, Furman etaZ1977). Calculations 
for the thermodynamic properties of the BEG model usually do not consider two sublat- 
tices, and refer to a range of parameters associated with a ferromagnetic ground state. 
Recent effective-field (Chakraborty 1984, Siqueira and Fittipaldi 1985 , Kaneyoshi 1987, 
Kaneyoshi and Sarmento 1988, Chakraborty 1988, Tucker 1988, 1989) and Bethe 
approximations (Chakraborty and Morita 1984, 1985, Chakraborty and Tucker 1985, 
1986) have failed correctly to identify and describe a staggered quadrupolar (sa) phase 
for certain ranges of the model parameters. In this Letter, however, we take advantage 
of a Cayley tree to formulate the problem as a non-linear discrete mapping whose fixed 
points and cycles are associated with the thermodynamic phases. We can then describe 
the main features of the global phase diagram, including the so phase. 

At zero temperature, for 1 > 0, a straightforward minimisation of the energy of the 
BEG model with respect to all possible spin arrangements yields the ground-state phase 
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Figure 1. Ground-state phase diagram on the 
(d ,  k )  plane for the BEG model on bipartite 
lattices: F, ferromagnetic; P,  paramagnetic phase. 
The insets indicate spinconfigurations on a square 
lattice. 

diagram shown in figure 1. For a bipartite lattice, it is sufficient to consider the ferro- 
magnetic ( J  > 0) case. The antiferromagnetic case, J < 0, can be mapped into the 
ferromagnetic problem by changing the signs of the spins on one sublattice, without 
changing the parameters K and D. In terms of k = K/J and d = D/zJ ,  where z is the 
coordination of the lattice, the region of the staggered quadrupolar (sa) phase is given 
by k + 1 < d < 0. In this region we have m, = qa = 0, for sublattice a, and mp = 0 with 
qp = 1, for sublattice B,  where mu = ( S l ) u  is the magnetisation and q v  = (S:), is the 
average quadrupolar moment per spin in sublattice v .  In other words, in the ground 
state, sublattice a is fully occupied by spins S, = 0, and sublattice /3 is randomly occupied 
by spins S, = i 1. It is expected that the staggered-order parameter, (qp - q a ) ,  decreases 
with temperature and vanishes at a critical value defining the sa-paramagnetic tran- 
sition. We show, however, that this behaviour is significantly more complex as a function 
of the coordination z and the parameters of the model. 

Kaneyoshi and Sarmento (1988) conjectured the existence of the sa phase from the 
peculiar features of the critical curves obtained in their effective-field treatment of the 
BEG model. Unfortunately, the results depicted in figures 3 and 7 of their paper are not 
consistent with the calculations for the ground state shown in figure 1 of our paper. A 
similar failure occurs in the treatment of Chakraborty (1988) for the D = 0 case. Tucker 
(1988) correctly treats the T = 0 limit, but does not investigate the possibility of appear- 
ance of the sa phase. The lack of consideration of sublattices in these and similar 
approaches precludes a more complete treatment of the sa region of the phase diagram. 
As a matter of fact, it went unnoticed by some authors that the sa phase had already 
been found by Tanaka and Kawabe (1985), in a two-sublattice mean-field approximation 
supplemented by some Monte Carlo calculations. Wang and Wentworth (1987) have 
also described this phase in a Monte Carlo simulation of the REG model on a cubic lattice. 

In this Letter we present an exact formulation of the BEG model on a Cayley tree of 
coordination z as a non-linear discrete two-dimensional mapping. The fixed points and 
cycles of this mapping, corresponding to the solutions deep in the interior of avery large 
tree, give the thermodynamic phases of the system on the so-called Bethe lattice. In 
particular, in the infinite coordination limit, for z+ E, J+ 0 ,  K+ 0 ,  with zJ and ZK 
fixed, we regain the well known mean-field solutions (Blume et a1 1971, Tanaka and 
Kawabe 1985). A similar calculation on a Cayley tree, for K = 0, has been performed 
by de Oliveira and Salinas (1985). 
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Consider a Cayley tree of n generations. Let Z r ) ,  2:') and Zi-) be the partial 
partition functions of the BEG model on this tree, with the central spin (nth generation) 
fixed at the values +l ,O,  and - 1, respectively. We then write the recursion relations 

P a )  

(2b) 

z(') = epPD(etPJ+PKZt;t) + zip) + eTPJ+PKZ$-))z-l 
n f l  

and 

zpil = (Z?) + ztp' + z$-))z-l 

between the partial partition functions of trees with n + 1 and n generations. Defining 
the dipolarmoment, m,, and the quadrupolar moment, q,, per spin, in the nth generation 

m,, q ,  = (z?) T z~-))/(z$+) + zip) + zk-1) 

mn+l = ( R ,  - Qn) / (R ,  + 1 + Q n )  

q n + i  = ( R ,  + Q,)/(R,  + 1 + Q,)  

( 3 )  

(4a )  
(4b) 

( 5 )  

we can use (2a) and (2b) to write the two-dimensional mapping 

where the functions R, = R(m,, qn)  and Q, = Q(m,, 4,) are given by 

R(m, q ) ,  Q(m, q )  = e-d/f{l - q + ekjzi[q cosh(l/zt) i m sinh(l/zt)]}'-' 

with t = ( P z J ) - ' ,  and = (kBT)- ' ,  where Tis the temperature. 
Given some boundary conditions, the iterations of the mapping lead to stable fixed 

points, associated with the thermodynamic phases on the Bethe lattice. It is straight- 
forward to see that at the paramagnetic (P) phase there is a simple stable fixed point, 
m* = O,q* # 0. Attheferromagnetic(F)phase, thereisalsoasimplefixedpoint, km* # 
0 ,  q* # 0. At the SQ phase, however, there is a two-cycle fixed point, m* = 0, and q* = 
q: , qz , with 4 ;  # q; (the value of q* oscillates between the values 4: and q:). From 
a linear analysis of stability of these fixed points, we can find the critical surfaces in the 
( k ,  d ,  t )  space. Overlaps between regions of stability, for distinct boundary conditions, 
indicate the possibility of phase coexistence and the presence of a first-order surface. In 
this case, the analysis of stability has to be supplemented by a calculation of the free 
energy on the Bethe lattice. 

For k < - 1, the limits of stability of the P phase correspond to the F-P and the SQ-P 
critical surfaces in the ( k ,  d ,  t )  space. In the P phase, q* is given by 

q* = 2R(O, q*)/(2R(O, q*)  + 1). (6) 
With the new variables x = exp(k/zt) cosh(l/zt), y = exp(k/zt) sinh(l/zt), and U = 
exp(-d/t), the F-P critical surface is given by 

y = (1 - q* + q*x) / ( z  - l)q* 

1 - q* + q*x = - ( z  - l )q*(l  - q * ) ( x  - 1) 

(7)  

(8) 

where q* comes from (6), while the SQ-P critical surface is given by 

supplemented by (6). The intersection of these surfaces leads to a bicritical line given 
by the equations 

x = &(y(Z - 2 )  + 1 - [y*22 + 1 - 2y(z  - 2 ) p }  

1 / U  = 2y(x + y)*-1/(1(- x - y ) .  

(9) 

(10) 

and 

The projections of this line on the (d ,  t )  and the (d ,  k )  planes are drawn in figure 2 for 
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Figure 2. Projections of the bicritical line 
of the BEG model on (a)  the (d ,  t ) ,  and ( b )  
the (d ,  k ) ,  planes for several values of the 
coordination z .  The results forz  = 100cor- 
respond to the mean-field limit d 

d -  1 -1 2d- 1 

la) lb) i c  I 

Figure3. Schematic sections of the global phase diagram of the BEG model on the ( k ,  t )  plane 
for z = 3 and ( a )  d < 0 ,  ( b )  d = 0. and (c) d > 0. Continuous and first-order transitions are 
indicated by full and broken curves respectively. In part (c) there is a tricritical point along 
the F-P phase boundary. 

several values of the coordination z.  There are no finite temperature solutions for z 4 3. 
The bicritical line clearly displays a re-entrant behaviour in the d > 0 region for large 
enough values of z (in fact, for z 2 7). 

We have also performed some numerical calculations to investigate the location of 
the F-P and SQ-P critical surfaces. As illustrated in figures (3)-(5),  it is possible to find 
three qualitative distinct situations, depending on the coordination of the lattice. 

(i) For z = 3, the bicritical line is given by t = 0, and k = d - 1. For d < 0, the SQ-P 
and F-P critical surfaces join along this line (see figure 3(a)) .  At finite temperatures, 
there is, therefore, no transition between the SQ and F phases. Ford  = 0, there is only a 
smooth critical line between the paramagnetic and the ferromagnetic phases in the (t ,  k )  
plane. Ford  > 0, as shown in figure 3(c), the F-P critical surface is bounded by a tricritical 
line, below which there is a first-order surface. 

(ii) For 4 s z s 6, and d < 0, the SQ-P and F-P critical surfaces meet at a bicritical 
line (figure 4(a)). There is a coexistence surface, indicated by the broken line, bounded 
by a bicritical line and, at t = 0, by the k = d - 1 line. Although the bicritical line is not 
re-entrant, the SQ phase displays a bulge into the d > 0 region. For d = 0, the bicritical 
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Figure 4. Schematic sections of the global 
phase diagram of the BEG model on the 
(k, t )planefor(a)z  = 4 , 5 , 6 a n d d i O , ( b )  
z = 4 and d = 0, (c) z = 5,6 and d = 0, and 
(d )  z = 4 , 5 , 6  and d > 0. Continuous and 
first-order transitions are indicated by full 
and broken curves respectively. Ford < 0, 
there is a bicritical point and a coexistence 
line between the SQ and F phases. For d = 
0, the bicritical point collapses at t = 0. 
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Figure 5 .  Schematic sections of the global 
phase diagram of the BEG model on the 
( k ,  t )  plane for z 7 and (a )  d < 0, ( b )  
O < d < d , , ( c ) d =  d , ,and(d)d>d, .Con-  
tinuous and first-order transitions are indi- 
cated by full and broken curves 
respectively. For 0 < d < d,, there is a 
coexistencelineofsoandFphases between 
two bicritical points (which collapse at a 
special point, for d = d z ) .  This illustrates 
the re-entrance of the bicritical line in the 
( k ,  d ,  r )  space. 

line collapses as t = 0, as shown in figures 4(b)  and 4(c) (the F-P line displays a re-entrance 
for z = 5 , 6 ) .  These results are in qualitative agreement with the occurrence of re-entrant 
and ‘normal’ F-P lines on the cubic and square lattices, respectively, in the Monte Carlo 
simulations for the BEG model (de AlcAntara Bonfim and Obcemea 1986, Wang and 
Wentworth 1987), although it should be noticed that these simulations do not predict a 
SQ phase for d = 0. Finally, for d > 0, our calculations indicate ferromagnetic and SQ 
regions separated by a paramagnetic phase (figure 4 ( d ) ) .  

(iii) For z b 7 ,  as illustrated in figures 5(a)-(d), the bicritical line itself displays a re- 
entrant behaviour. For 0 < d < d ,  where, given the coordination z ,  d, is the maximum 
value of d for which there is still a bicritical line, the phase diagram in the ( t ,  k )  plane 
displays two bicritical points, defining a coexistence line, and a tricritical point, along 
the F-P critical line. 
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It is interesting to remark that, in the infinite coordination limit ( z  + m, with k ,  t, 
and d ,  fixed), we regain the results of the two-sublattice mean-field calculation of Tanaka 
and Kawabe (1985). In this mean-field limit, the F-P and SQ-P critical surfaces are, 
respectively, given by the simple expressions 

l / t  = 1 + texp(-  k + d/t) (11) 
and 

t / k  = -q*(1 - q*)  
where 

l /q* = 1 + 4 exp(-q*k/t + d/ t ) .  

The bicritical line is given by 

t = ( k  + l /k) (14) 
with 

d / ( l  + k )  = 1 + ( l / k )  ln[-2/(k + I)]. 
In conclusion, the formulation of the problem on a Cayley tree as a discrete mapping 

is quite convenient for investigating the global phase diagram of the BEG model. The 
possible splitting of the lattice into distinct sublattices comes naturally from the iterations 
of the mapping. To make contact with Monte Carlo simulations, we show the effect of 
the coordination of the tree on the re-entrant character of the bicritical line and of the 
borders of the ordered regions. Unlike previous calculations, we are able correctly to 
describe the main features of the staggered quadrupolar phase. 

We are grateful to Professor E Sarmento for the communication of some recent ref- 
erences on this problem. Financial support from the Brazilian agencies FINEP, CNPq, 
and CAPES, is also acknowledged. 
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